标准CRC生成多项式如下表:
名称 | 生成多项式 | 简记式* | 标准引用 |
CRC-4 | x4+x+1 | 3 | ITU G.704 |
CRC-8 | x8+x5+x4+1 | 0x31 | |
CRC-8 | x8+x2+x1+1 | 0x07 | |
CRC-8 | x8+x6+x4+x3+x2+x1 | 0x5E | |
CRC-12 | x12+x11+x3+x+1 | 80F | |
CRC-16 | x16+x15+x2+1 | 8005 | IBM SDLC |
CRC16-CCITT | x16+x12+x5+1 | 1021 | ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS |
CRC-32 | x32+x26+x23+…+x2+x+1 | 04C11DB7 | ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS |
CRC-32c | x32+x28+x27+…+x8+x6+1 | 1EDC6F41 | SCTP |
生成多项式的最高位固定的1,故在简记式中忽略最高位1了,如0x1021实际是0x11021。
I、基本算法(人工笔算):
以CRC16-CCITT为例进行说明,CRC校验码为16位,生成多项式17位。假如数据流为4字节:
BYTE[3]、BYTE[2]、BYTE[1]、BYTE[0];
数据流左移16位,相当于扩大256×256倍,再除以生成多项式0x11021,做不借位的除法运算(相当于按位异或),所得的余数就是CRC校验码。
发送时的数据流为6字节:
BYTE[3]、BYTE[2]、BYTE[1]、BYTE[0]、CRC[1]、CRC[0];
注意:使用长除法进行计算式,需要将除数多项式与预置位0x0000或0xFFFF异或以后再进行计算。
II、计算机算法1(比特型算法):
1)将扩大后的数据流(6字节)高16位(BYTE[3]、BYTE[2])放入一个长度为16的寄存器;
2)如果寄存器的首位为1,将寄存器左移1位(寄存器的最低位从下一个字节获得),再与生成多项式的简记式异或;
否则仅将寄存器左移1位(寄存器的最低位从下一个字节获得);
3)重复第2步,直到数据流(6字节)全部移入寄存器;
4)寄存器中的值则为CRC校验码CRC[1]、CRC[0]。
III、计算机算法2(字节型算法):256^n表示256的n次方
把按字节排列的数据流表示成数学多项式,设数据流为
BYTE[n]BYTE[n-1]BYTE[n-2]、、、BYTE[1]BYTE[0],
表示成数学表达式为
BYTE[n]×256^n+BYTE[n-1]×256^(n-1)+…+BYTE[1]*256+BYTE[0],
在这里+表示为异或运算。设生成多项式为G17(17bit),CRC码为CRC16。
则,
CRC16=(BYTE[n]×256^n+BYTE[n-1]×256^(n-1)+…+BYTE[1]×256+BYTE[0])×256^2/G17,
即数据流左移16位,再除以生成多项式G17。
先变换BYTE[n-1]、BYTE[n-1]扩大后的形式,
CRC16=BYTE[n]×256^n×256^2/G17+BYTE[n-1]×256^(n-1)×256^2/G17+…+BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17 =(Z[n]+Y[n]/G17)×256^n+BYTE[n-1]×256^(n-1)×256^2/G17+…+BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17 =Z[n]×256^n+{Y[n]×256/G17+BYTE[n-1]×256^2/G17}×256^(n-1)+…+BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17 =Z[n]×256^n+{(YH8[n]×256+YHL[n])×256/G17+BYTE[n-1]×256^2/G17}×256^(n-1)+…+BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17 =Z[n]×256^n+{YHL[n]×256/G17+(YH8[n]+BYTE[n-1])×256^2/G17}×256^(n-1)+…+BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17
这样就推导出,BYTE[n-1]字节的CRC校验码为{YHL[n]×256/G17+(YH8[n]+BYTE[n-1])×256^2/G17},即上一字节CRC校验码Y[n]的高8位(YH8[n])与本字节BYTE[n-1]异或,
该结果单独计算CRC校验码(即单字节的16位CRC校验码,对单字节可建立表格,预先生成对应的16位CRC校验码),所得的CRC校验码与上一字节CRC校验码Y[n]的低8位(YL8[n])
乘以256(即左移8位)异或。然后依次逐个字节求出CRC,直到BYTE[0]。
字节型算法的一般描述为:本字节的CRC码,等于上一字节CRC码的低8位左移8位,与上一字节CRC右移8位同本字节异或后所得的CRC码异或。
字节型算法如下:
1)CRC寄存器组初始化为全”0″(0x0000)。(注意:CRC寄存器组初始化全为1时,最后CRC应取反。)
2)CRC寄存器组向左移8位,并保存到CRC寄存器组。
3)原CRC寄存器组高8位(右移8位)与数据字节进行异或运算,得出一个指向值表的索引。
4)索引所指的表值与CRC寄存器组做异或运算。
5)数据指针加1,如果数据没有全部处理完,则重复步骤2)。
6)得出CRC。
CRC CCITT—1,“-1”的意思是CRC的初值为0Xffff。
方法1:将存有数据的字节数组进行逐位计算,求得字节形式的CRC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
typedef unsigned __int16 INT16U; #define CRC_SEED 0xFFFF // 该位称为预置值,使用人工算法(长除法)时 需要将除数多项式先与该与职位 异或 ,才能得到最后的除数多项式 #define POLY16 0x1021 // 该位为简式书写 实际为0x11021 INT16U crc16(unsigned char *buf,unsigned short length) { INT16U shift,data,val; int i; shift = CRC_SEED; for(i=0;i<length;i++) { if((i % 8) == 0) data = (*buf++)<<8; val = shift ^ data; shift = shift<<1; data = data <<1; if(val&0x8000) shift = shift ^ POLY16; } return shift; |
方法2、查表法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
static unsigned short ccitt_table[256] = { 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7, 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF, 0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6, 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE, 0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485, 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D, 0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4, 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC, 0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823, 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B, 0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12, 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A, 0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41, 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49, 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70, 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78, 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F, 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E, 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256, 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D, 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C, 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634, 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB, 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3, 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A, 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92, 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9, 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1, 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8, 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0 }; unsigned short crc_ccitt(unsigned char *q, int len) { unsigned short crc = 0; while (len-- > 0) crc = ccitt_table[(crc >> 8 ^ *q++) & 0xff] ^ (crc << 8); return ~crc |
0 条评论